
International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Finding Accessibility and Interaction Vulnerability
of Rational Rose Class Design Using Design

Metrics
Soham H. Gandhi, D. R. Anekar, Mahevash A. Shaikh, Ajinkya A. Salunkhe

Abstract— The increasing importance of software measurement has led to the development of new software measures. Many
metrics have been proposed related to various constructs like class, coupling, cohesion, inheritance, information hiding and polymorphism.
To satisfy security requirements, it is essential to protect our data from unauthorized information disclosure and information alteration. In
order to minimize vulnerabilities and achieve target level security, quantification of security is necessary. Unfortunately, quantitative
estimation of security in earlier stage of the software development life cycle (SDLC) is largely missing. The design phase of software
development provides the foundation for secure software. Reducing vulnerability at this phase minimizes rework in subsequent
development phases. Taking security into account from the early stages of a system’s development should have a significant impact on
decreasing many software vulnerabilities. In order to address this problem, we have developed a methodology which is based on existing
research work, which can be able to provide proper prediction of security vulnerabilities with respect to design properties for an object-
oriented class design.

Index Terms— Class diagram, Vulnerability, Cohesion, Data encapsulation, Model file, Design metrics, Security measurements.

—————————— ——————————

1 INTRODUCTION
bject-Oriented Analysis and Design (OOAD) of soft-
ware provide many benefits such as reusability, de-

composition of problem into easily understood object(s) and
future modification. But the OOAD software development
life cycle is not easier than the typical procedural approach.
Therefore, it is necessary to provide dependable guidelines.
Object-Oriented programming metrics is an aspect to be con-
sidered. Metrics are a set of standards against which one can
measure the effectiveness of Object-Oriented Analysis tech-
niques in the design of a system. “Vulnerability is an in-
stance of fault in the specification, development or configu-
ration of software such that its execution can violate an im-
plicit or explicit policy” [15].

In order to minimize vulnerabilities and achieve target level
security, quantification of security is necessary. Unfortunately,
quantitative estimation of security in earlier stages of the
software development life cycle (SDLC) is largely missing.
The design phase of software development provides the
foundation for secure software. Reducing vulnerability at this
phase minimizes rework in subsequent development phases.
Taking security into account from the early stages of a sys-
tem’s development should have a significant impact on de-
creasing many software vulnerabilities.

Software metrics are often used to access the ability of soft-
ware to achieve predefined goal(s) [10]. Software metric is a
measure of some property of a piece of software. Software
metric is a term that contains many activities, all of which in-
volve some degree of software measurement. Software meas-
urement is the assessment and prediction of well-defined at-
tributes of well-defined entities. Software attributes include,
in addition to security, maintainability, performance, reusabil-
ity and reliability [1]. Security measurements have been de-
fined to assess security at the level of implementation code [3].
This paper proposes a new set of metrics which are capable of
assessing the security quality of OO class designs. In our case
we use <<secrecy>> stereotype to identify confidential data.
Once the metric’s results are identified for alternative class
diagrams, it is easy to find the most secure one to implement.

1.1 Basic Concept
Process Metrics: Process metrics are known as management
metrics and are used to measure the properties of the process
which is used to obtain the software. Process metrics include
cost metrics, efforts metrics, and advancement metrics and
reuse metrics. Process metrics help in predicting the size of the
final system and in determining whether a project is running
according to schedule.

Products Metrics: Product metrics are also known as quality
metrics and are used to measure the properties of the soft-
ware. Product metrics include product non reliability metrics,
functionality metrics, performance metrics, usability metrics,
cost metrics, size metrics, complexity metrics and style met-
rics. Products metrics help in improving the quality of differ-
ent system components, and in comparisons between existing
systems.

O

————————————————
 D. R. Anekar is currently assistance professor at Sinhgad Academy of

Engineering, Pune, India. E-mail: devanekar@gmail.com
 Soham H. Gandhi is currently pursuing bachelor degree program in

Information Technology in Sinhgad Academy of Engineering, University
of Pune, India. E-mail: sohamgandhi91@gmail.com

 Mahevash A. Shaikh is currently pursuing bachelor degree program in
Information Technology in Sinhgad Academy of Engineering, University
of Pune, India. E-mail: shaikhmahevash@gmail.com

 Ajinkya A. Salunkhe is currently pursuing bachelor degree program in
Information Technology in Sinhgad Academy of Engineering, University
of Pune, India. E-mail: ajinkya.f4@gmail.com

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

1.2 Object Oriented Concept
Cohesion: It is a measure of how strongly related or focused
the responsibilities of a single module are. If the methods that
serve a given class tend to be similar in many aspects, then the
class is said to have high cohesion.

Encapsulation: It is the mechanism that binds together the
code and the data it manipulates, and keeps both safe from
outside interference and misuse [8]. E.g. When a user selects a
command from a menu in an application, the code used to
perform the actions of that command is hidden from the user.

2 RELATED WORK
Software metrics can be used to find out the properties of the
software that we are developing and predict the needed effort
and development period. Many different kinds of metrics
have been developed during the past few decades, matching
with the different programming paradigms like structural
programming and object-oriented programming (OOP).
Among these, “LOC (Lines of Code)” is one of the most primi-
tive and oldest metrics. In the beginning of 1990s, Chidamber
and Kemerer proposed six new object-oriented metrics to
overcome the limitations of the more traditional code-based
metrics .They are “weighted methods per class (WMC)”,
“depth of inheritance tree (DIT)”, “number of children
(NOC)”, “coupling between object classes (CBO)”, “response
for a class (RFC)”,and finally, “lack of cohesion in methods
(LCOM)”.[9] Their metrics have certainly helped users analyze
their code to some extent along with other similar OO metrics.
However, as software engineers’ focus has shifted to the earli-
er stages of the life cycle, the shortcomings of OO code metrics
like their predecessors have become more apparent. Therefore,
a comprehensive approach to developing and applying met-
rics to artifacts such as designs produced at the early stages of
the life cycle is needed.

In the meantime, the Unified Modeling Language (UML) was
adopted by the Object Management Group (OMG) in 1997
ending the so-called “OO methods war”, and since then has
become the de facto specification standard graphical language
for specifying, constructing, visualizing, and documenting
software systems, business modelling and other non-software
systems. UML has been intensively used by software develop-
ers since its introduction. Many organizations are using UML
as a common language for their project artefacts and have
adopted UML as their organization’s standard. As the amount
of UML models produced within an organization increased, a
need for measuring their characteristics has arisen. The overall
aim is the developments of software metrics that can be ap-
plied to UML models. These metrics are comparable to UML
itself in such a way that it plays a role as a standardized met-
rics suite

One of the earliest studies in this area was the development of
software security design principles by Saltzer and Schroeder
[12]. These principles were intended as guidance to help de-
velop secure systems, mainly operating systems. Bishop’s [13]

and McGraw’s [6] texts identified several similar security de-
sign principles. An existing approach which is used by pro-
grammers to assess the level of security of given program code
is based on the identification of vulnerabilities [7] [4].

A study conducted by Chowdhury et al. [3] defined a number
of security metrics that assess the security of a given program
based on code inspections. Measuring the security of the sys-
tem’s architecture has been done by Manadhata et al. [2]. This
study focused on the system’s ‘attack surface’. Similarly, a
study that defined design metrics which measure certain
software quality attributes was conducted by Bansiya [16]. He
identified an approach to improve the Quality Model for Ob-
ject-Oriented Design (QMOOD) [5].

3 PROPOSED WORK & SYSTEM
ARCHITECTURE

Figure 1: Proposed work and System Architecture

Proposed system take as input from the user (developer) a
model file extension with (*.mdl), that is, a rational rose file
which contains class diagram. Using the data library which is
the input and output system we interact with the model file. In
short, the data library loads or unloads the model file. After
loading the model file, the Model File Parser tokenizes the
words and finds out the class diagram’s attributes and opera-
tions. After that, Design metrics will be applied on the loaded
parsed model file, which will calculate the metrics and display
them in a table. After this, a graph will be plotted which can
be of any type, in our case we use Radar Graph. Finally, we
can generate code for the class diagram that is most secure.

3.1 Manual Entry
This module will be provided where in user will be able to
add classes to profile manually. User can enter class name,
attribute name, attribute type, attribute stereotype, and attrib-
ute access specifier, Operation name, operation parameters
and their return type, operation return type and access specifi-
er. This module will also allow user to edit previously added
classes. After entering the class, attribute and operation infor-
mation, all information interacts with data library i.e. input
and output system.
All information can be store in class profile. In future one can
load or unload the class information.

3.2 Rational Rose Class Design (*.mdl)
Ration Rose Class design is nothing but a class diagram which
is drawn in Rational Rose software. Every Rational Rose file

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

has a *.mdl extension; this file is known as Model file. The
proposed system will takes the model file (*.mdl) as input. The
model file interacts with the model file parser which extracts
the class information. Then that class information interacts
with data library that is the input and output system.

Sample structure for Model file (*.mdl) shown in Figure 2.

Figure 2: Sample Model File Internal Structure

3.3 Data Library / Input and Output System
The Data library or the input and output system helps to read
files or content from storage media. The Data library module
will allow us to save profile to files and later load or unload
them. A profile shall contain the names of classes that are read
from Rational Rose mode file (*.mdl). Using this data library,
we can interact with model file (*.mdl). The Data library inter-
acts with the Model file parser while reading a Rational Rose
class diagram from model file.

3.4 MDL file Extractor
This module that will parse a UML diagram is designed using
Rational Rose software. The Module file Parser will basically
be a parser that will extract all required information from a
model file and add all acquired classes’ information to the
current profile. The Model file parser parses the model file
into tokens. Tokens are nothing but individual words and
punctuation marks. The Model file parser identifies the class
diagram from the model file to apply security metrics.
An overview of proposed Model file extractor or parser is
shown in algorithm 1.

Algorithm 1: Class Information MDLExtractor
[Class, Attribute and Operation details] =
MdlEx (“file.mdl”)

Input: Model File {*.mdl File}
Output: Class Name
Output: Attribute Name and details
Output: Operation Name and details
1. Initialize input with standard input buffer stream
2. Initialize str , str_adjust as a String

3. Initialize sb as StringBuffer
4. Initialize class_name, Attribute_name, Attribute_type, At-

tribute_stereotype, Operation_name, object_Parameter_type,
object_Parameter, object_Reture_type with new vector

5. Read first line and save to str
6. While str not equal to null

If str contains “(object Class ” then
Add next element to Class_name vector

End if
If str contains “"(object ClassAttribute” then
Add next element to Attribute_name vector
str = Read next line
While str not contains “)”

sb = sb.append(str.trim())
str_adjust = sb.toString()

End while
Replace tab space and new line character with single
space from str_adjust
str = str_adjust
 If str_adjust contains “ type ” then

Add next element to Attribute_type vector
 End if
 If str contains “stereotype” then
Add next element to Attribute_stereotype vector
 else
 Add “ ” to Attribute_stereotype vector
 End if

 End if
If str contains “(object Operation ” then
 Add next element to Operation_name vector
 str = Read next line
 If str contains “list Parameter then

While str not contains “)”
sb = sb.append(str.trim())
str_adjust = sb.toString()

End while
Replace tab space and new line character
with single space from str_adjust

str = str_adjust
If str_adjust contains “(object Parameter” then
Add next element to object_Parameter vector
End if
If str contains “ type ” then
Add next element to object_Parameter_type vector
End if
End if
If str contains “ Result ” then
Add next element to object_Reture_type vector
End if
End if

End while

In above algorithm, we have Model file as an input, output is
class information like class name, attribute name, and it details
as well as operation name and its details.
In this algorithm we have some initialization like buffer, some
string variables and most important vector.
Algorithm reads the file line by line till the end of file. When it

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

finds the token like “(object Class ” then next value of token
store in separate vector. After this search for “(object ClassAt-
tribute”, next value store in proper vector. Likewise algorithm
searches for model file keyword. After finding particular key-
word next value of keyword get stored.
Using this algorithm we can extract the class information from
rational rose model file.

3.5 Security Metrics
This module will calculate security metrics for the current pro-
file and display it in tables. Bandar Alshammari [14] state
some seven security matrices. These metrics measure potential
information flow properties within a given class based on its
design. The metrics have been scaled to all fit with the range 0
to 1. A low value is desired for each. These metrics at this
stage are concerned with the properties of individual object-
oriented classes.

3.5.1 Accesibility Metrics
Accessibility metrics are used for measuring the access level of
attributes and operations or methods in a particular class from
access modifiers perspective, like public denoted as ‘+’, pri-
vate denoted as ‘-’, protected denoted as ‘#’. These accessibil-
ity metrics statically measures the potential flow of infor-
mation. This category is divided into three kinds of accessibil-
ity metrics-CIDA, CCDA, and COA.

3.5.1.1 Classified Instance Data Accessibility (CIDA)
It helps to protect the classified internal representation. It is
calculated by dividing the number of classified instance public
attribute in a class by number of classified attribute. Higher
values indicate higher accessibility to these classified attrib-
utes and hence a larger ‘attack surface’.

3.5.1.2 Classified Class Data Accessibility (CCDA)
This metric measures the direct accessibility of the classified
class attributes of a particular class. This metric aims to protect
the classified internal representations of a class. It is calculated
by dividing classified methods by the total number of poten-
tial interactions with all attributes in that class.

3.5.1.3 Classified Operation Accessibility (COA)
This metric is the ratio of the accessibility of public classified
methods of a particular class. It is calculated by dividing the
number of classified public methods in a class by number of
classified method.

3.5.2 Interaction Metrics
Interaction metrics used to measure the impact of class interaction
between method or operation and attribute on the security of that
class. This category divided into four kinds of interactions, like
classified mutators (setters/constructors), classified accessors
(getters) or unclassified methods.

3.5.2.1 Classified Mutator Attribute Interaction (CMAI)
This metric measures the interactions of mutators with classi-
fied attributes in a class. It is calculated by dividing number of
mutated classified attribute by multiplication of total number
of mutators and number of mutated classified attribute.

3.5.2.2 Classified Accessor Attribute Interaction (CAAI)
This metric measures the interactions of accessors with classi-
fied attributes in a class. It is calculated by dividing number of
accessors classified attribute by multiplication of total number
of accessors and number of assessor’s classified attribute.

3.5.2.3 Classified Attribute Interaction Weight (CAIW)
This metric is defined to measure the interactions with classi-
fied attributes by all methods of a given class. It is calculated
by dividing classified methods by the total number of poten-
tial interactions with all attributes in that class.

3.5.2.4 Classified Methods Weight (CMW)
This metric is defined to measure the weight of the methods in
a class which potentially interact with any classified attributes
in a particular class. It is calculated by dividing the number of
classified methods by the total number of methods.

3.6 Graph
This module will read values from the table of security metrics for
current profile and display it in graphs (Radar or Web Graphs).
We can plot any graph like bar graph, histogram, line, scatter, pie
chart, but in our case we use Radar graph. We use Radar graph
because lines closer to the center mean that a specific class
diagram is more secure than the lines away from the center. It
easily concludes the result, meaning which diagram is more secure
among the alternatives. The Radar graphs have been scaled to fit
the range 0 to 1. Lower value indicates more secure class design
and higher value indicates less secure class design. We can plot
one graph for comparison of one or more class designs, or
different graphs.

This radar graph also called the spider graph.

A sample Radar graph that we are using in the proposed sys-
tem is shown in Figure 3.

Figure 3: Sample Radar Graph

3.7 Code
We can generate any object oriented code but in our case we
choose java to implement code. This module will help user(s)
in converting the currently loaded Profile into .java files. We
can generate code for the most secure class diagram.

International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4 CONCLUSION
Fixing security issues in software is an expensive process,
more so when errors are discovered after the software product
has been dispatched to the end users. In such cases, not only
does the software company’s reputation suffer, but the cost of
the project also goes up. The system described in this paper
can prevent all this and also improve efficiency-the software
developer need not worry about which of his class diagrams is
most secure, the system will assess that for him. These metrics
allow designers to discover and fix security vulnerabilities at
an early stage, by comparing the security of various class dia-
grams. Thus, the programmer can focus more on the other
quality aspects of coding, while still ensuring security.

Future work will be extension of this paper, we will use some
metrics that are reduce the complexity of design as well as code
implementation. New system will combining the future of this
paper and new metrics. We also are using some code based met-
rics that are used for calculating complexity of code.

ACKNOWLEDGMENT
We would like to thank Mrs Devata R. Anekar and Mr. Sunil
L. Bangare for their valuable guidance and our Institution and
other faculty members, without whom this Paper would have
been a distant reality. Last but not the least, we would also like
to thank to our friends for listening to our ideas, asking ques-
tions and providing feedback and suggestions for improving
our ideas.

REFERENCES
[1] Sachitano, R. O. Chapman, and J. A. Hamilton, "Security in software

architecture: a case study," in Proceedings from the Fifth Annual IEEE
SMC Information Assurance Workshop, 2004, pp. 370-376.

[2] P. K. Manadhata, K. M. C. Tan, R. A. Maxion, and J. M. Wing, "An
Approach to Measuring A System's Attack Surface," Carnegie Mellon
University, Pittsburgh, PA August 2007.

[3] I. Chowdhury, B. Chan, and M. Zulkernine, "Security metrics for
source code structures," in Proceedings of the Fourth International Work-
shop on Software Engineering for Secure Systems Leipzig, Germany:
ACM, 2008.

[4] M. Howard and D. LeBlanc, Writing Secure Code. Redmond, Wash.:
Microsoft Press, 2002.

[5] J. Bansiya and C. G. Davis, "A hierarchical model for object-oriented
design quality assessment," IEEE Transactions on Software Engineering,
vol. 28, pp. 417, 2002.

[6] J. Viega and G. McGraw, Building Secure Software: How To Avoid Secu-
rity Problems The Right Way. Boston: Addison-Wesley, 2002.

[7] K. Maruyama, "Secure refactoring: improving the security level of
existing code," in Proceedings of the Second Internation Conference on
Software and Data Technologies Barcelona, Spain, 2007.

[8] E. Balagurusamy, "Object Oriented Programming with C++", 3rd
edition, TATA McGraw Hill.

[9] Chidamber, S. R. and Kemerer, C. F. 1994. A Metrics Suite for Object
Oriented Design. IEEE Trans. Softw. Eng. 20, 6 (Jun. 1994), 476-493.

[10] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, PWS Publishing Co., Bostan, MA, USA, 1997.

[11] M. Howard, Attack Surface: Mitigate Security Risks by Minimizing
the Code You Expose to Untrusted Users.

[12] J. H. Saltzer and M. D. Schroeder, "The protection of information in
operating systems," in Proceedings of the IEEE, 1975, pp. 1278-1308.

[13] M. Bishop, Computer Security: Art and Science. Boston: Addison-
Wesley, 2003.

[14] Alshammari, Bandar and Fidge, Colin J. and Corney, Diane (2009)
“Security metrics for object-oriented class designs”. In: QSIC 2009
Proceedings of: Ninth International Conference on Quality Software,
August 24-25, 2009, Jeju, Korea. (In Press).

[15] Y. Shin and L. Williams “IS Complexity Really the Enemy of Soft-
ware Security?” in the Proc. Of Th 4th ACM Workshop on Quality of
Protection, Virginia, USA, Oct. 2008, pp. 47-50.

[16] J. Bansiya, "A Hierarchical Model for Quality Assessment of Object-
Oriented Designs," Ph.D. Thesis, University of Alabama in Hunts-
ville, 1997.

